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We demonstrate a new framework for analyzing and controlling distributed sys-
tems, by solving constrained optimization problems with an algorithm based on that
framework. The framework is an information-theoretic extension of conventional full-
rationality game theory to allow bounded rational agents. The associated optimization
algorithm is a game in which agents control the variables of the optimization problem.
They do this by jointly minimizing a Lagrangian of (the probability distribution of)
their joint state. The updating of the Lagrange parameters in that Lagrangian is a
form of automated annealing, one that focuses the multi-agent system on the optimal
pure strategy. We present computer experiments for the k-sat constraint satisfaction
problem and for unconstrained minimization of NK functions.

1.1 Introduction

Recently a new framework for analyzing and controlling distributed systems
has been developed [6, 7, 8]. This framework starts with a parameterized class
of probability distributions, Q, across the joint state of the variables of the
system. A Lagrangian function of q ∈ Q, is minimized to determine a q over
the variables of the distributed system. We consider the special case of this
probability Lagrangian framework in which Q is the set of product distributions.

A strength of the framework is the connections it makes to relate disciplines
to one another. For example, it can be motivated by using information theory to
relate bounded rational game theory to statistical physics [6, 7]. In a noncooper-
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ative game the agents are statistically independent at any stage of the game, with
each agent i choosing its move xi by sampling its probability distribution (mixed
strategy) at that instant, qi(xi); the distribution of the joint-moves is a product
distribution q(x ∈ X) =

∏

i qi(xi). Inter-agent coupling occurs indirectly, across
time, via the updating of the {qi} at the end of each stage. Information theory
shows that the (bounded rational) equilibrium of the game is the q optimizing
an associated Lagrangian L(q).

For some games the optimal q ∈ Q is the minimizer of the Kullback-Leibler
(KL) distance to a distribution p, D(q‖p) ≡

∑

x q(x) ln
(

q(x)/p(x)
)

[1], where p
is one of the variants of the canonical ensemble of statistical physics. In other
words, the Lagrangian in such cases is D(q‖p) for an associated p from statistical
physics. In particular, for Q being the set of product distributions, the bounded
rational equilibrium of the game is a mean-field approximation to p.

When the agents share the same utility function −G(x), the optimizer of
L(q) is the distribution that minimizes the expected value of G, subject to any
provided constraints and to an overall entropy value that sets the rationalities of
the agents. Moreover, the updating of the qi at the end of each stage of the game
can be designed to be a search process for an optimal q. For example, since q is a
vector in a Euclidean space, the search can be done with continuous techniques
like gradient descent or Newton’s method — even if X is a categorical, finite
space. Under such updating, the evolution of the game serves as a distributed
constrained optimization algorithm. Note how this contrasts with most stochas-
tic optimization algorithms (e.g. simulated annealing). Those algorithms use
probability distributions to help guide search for points x = [x1, · · · , xN ] ∈ X
optimizing a function G(x). In contrast, we search over distributions directly.

In many optimization problems, particularly Constraint Satisfaction Prob-
lems (CSPs), we want to find multiple solutions q. Multiple runs of the game
outlined above might not find different q. Here we show how to construct a single
game to obtain multiple distinct solutions at once. The approach is to reparam-
eterize X so that a product distribution over the new parameters corresponds
to a coupled distribution across X. We consider such a reparameterization that
results in a mixture of M product distributions q(x) =

∑

m q0(m)qm(x) [4]. As
described below, the associated Lagrangian “pushes” the separate qm(x) apart.

We begin in §1.2 by elaborating our Lagrangian for mixture models, and
consider simple methods to minimize this Lagrangian in §1.3. Experimental
validation is presented for k-satisfiability (§1.4.1) and NK (§1.4.2) problems.

1.2 Specifying the Lagrangian

To specify the Lagrangian we must first fix the distribution p(x) we wish to
get as close (in KL distance) to. If the objective function we wish to mini-
mize is G(x) (i.e., G is the negative of the utility shared by the bounded ra-
tional agents) then we consider the T -parameterized Boltzmann distribution
p(x) = exp

(

−G(x)/T
)

/ Z(T ) (At low T — high rationalities — this distribu-
tion is concentrated on x having low G values.) The KL distance to this p is
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proportional to
L(q) = Eq[G]− TS(q) (1.1)

where Eq[G] ≡
∑

x q(x)G(x), and S(q) ≡ −
∑

x q(x) ln q(x) is the entropy of q.
For product q’s S(q) =

∑

i S(qi) where S(qi) = −
∑

xi
qi(xi) ln qi(xi).

Since we are interested in problems with constraints, it is natural to write
G(x) = O(x) +

∑

a λaca(x) where O is an objective to be minimized, and the
ca are a set of constraint functions that are required to be non-negative. The
λa are Lagrange multipliers that are used to enforce the constraints. (In CSP’s
O(x) = 0.)

As mentioned above, we consider distributions of the form q(x) =
∑M

m=1 q0(m)qm(x) where
∑

m q0(m) = 1 and qm(x) =
∏

i qm
i (xi). Substitut-

ing this into (1.1) gives the mixture Lagrangian

L(q) =
∑

m

q0(m)Eqm [G]− TS(q) =
∑

m

q0(m)L(qm)− TJ(q) (1.2)

with L(qm) given by (1.1) and J(q) ≥ 0 being the Jensen-Shannon (JS) distance,

J(q) = S
(

∑

m

q0(m)qm
)

−
∑

m

q0(m)S(qm) = −
∑

m

∑

x

q0(m)qm(x) ln
q(x)

qm(x)
.

The JS term pushes the optimal qm to differ from each other. Unfortunately, it
also couples all variables (because of the sum inside the logarithm), preventing
a distributed solution. Thus, we replace J with another function which lower-
bounds J and which requires less communication between agents.

A Variational Lagrangian

Following [2], we introduce M variational functions w(x|m) and lower-bound the
true JS distance with

J(q) = −
∑

m

∑

x

q0(m)qm(x) ln

[

1

w(x|m)
q0(m)

w(x|m)q(x)

q0(m)qm(x)

]

=
∑

m

∑

x

q0(m)qm(x) ln w(x|m))−
∑

m

q0(m) ln q0(m)

−
∑

m

∑

x

q0(m)qm(x) ln
w(x|m)q(x)

q0(m)qm(x)
.

Now replace M of the − ln terms with the lower bound − lnx ≥ −νx + ln ν + 1
obtained from the Legendre dual of the logarithm to find

J(q) ≥ J(q, w, ν) ≡
∑

m

∑

x

q0(m)qm(x) ln w(x|m)−
∑

m

q0(m) ln q0(m)

−
∑

m

νm

∑

x

w(x|m)q(x) +
∑

m

q0(m) ln νm + 1.
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We optimize over w and ν to maximize this lower bound. To further aid in
distributing the algorithm we restrict the class of variational w(x|m) to products:
w(x|m) =

∏

i wi(xi|m). For this choice

J(q, w, ν) ≡
∑

m

q0(m)

{

Bm,m −
∑

m̃

Am,m̃νm̃ + ln νm

}

+ S[q0] + 1 (1.3)

where Am̃,m
i ≡

∑

xi
qm̃
i (xi)wi(xi|m), Am̃,m ≡

∏d

i=1 Am̃,m
i , Bm,m

i ≡
∑

xi
qm
i (xi) ln wi(xi|m), and Bm,m ≡

∑d

i=1 Bm,m
i .3 At any temperature T the

variational Lagrangian which must be minimized with respect to q, w and ν
(subject to appropriate positivity and normalization constraints) is then

L(q, w, ν) =
∑

m

q0(m)L(qm)− TJ(q, w, ν). (1.4)

1.3 Minimizing the Lagrangian

Even if x ∈ X is a discrete quantity (as in the cases we consider here) the
optimization variables q determined by minimizing L for a fixed λ are contin-
uous so that gradient methods may be applied. Optimizing for the variational
parameters w and ν we find

1

νm

=
1

q0(m)

∑

m̃

q0(m̃)Am̃,m. (1.5)

wi(xi|m) ∝
q0(m)qm

i (xi)

νm

[

∑

m̃

q0(m̃)qm̃
i (xi)

Am̃,m

Am̃,m
i

]−1

. (1.6)

The dependence of L on q0(m) is particularly simple: L(q, w, ν) =
∑

m q0(m)E(m)− T
(

S(q0) + 1
)

, where

E(m) = Eqm(H)− T

(

S[qm] + Bm,m −
∑

m̃

Am,m̃νm̃ + ln νm

)

,

Thus the mixture weights are Boltzmann distributed:

q0(m) =
exp
(

−E(m)/T
)

∑

m̃ exp
(

−E(m̃)/T
) . (1.7)

The determination of qm
i (xi) is similar. The relevant terms in L involving qm

i (xi)
are L ≈ q0(m)

∑

xi
Em(xi)q

m
i (xi)− TS(qm

i ) where

Em(xi) = Eqm
\i

(H|xi)− T

(

lnwi(xi|m)−
∑

m̃

Am,m̃

Am,m̃
i

νm̃wi(xi|m̃)

)

.

3Note that if wi(xi|m) = 1/|Xi| is uniform across xi then Am̃,m

i
= 1/|Xi| and Bm,m

i
=

− ln |Xi|. Maximizing over νm we find that J(q, w = 1/|X|, ν = ν∗) = 0. Thus, maximizing
with respect to w increases the JS distance from 0.
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The conditional expectation Eqm
\i

[G|xi] is
∑

x\i
G(xi, x\i)q

m
\i

(x\i) where x\i ≡

[x1, · · · , xi−1, xi+1, · · ·xd] and qm
\i

(x\i) =
∏d

j=1( 6=i) qj(xj). The mixture proba-
bilities are thus determined as

qm
i (xi) =

exp
(

−Em(xi)/T
)

∑

xi
exp
(

−Em(xi)/T
) . (1.8)

Note that these results requires minimal communication between agents. As-
sign a 0 agent manage the determination of q0(m) and (i,m) agents to manage
determination of qm

i (xi). The M (i,m) agents for a fixed i communicate their

wi(xi|m) to determine Am,m̃
i . These results along with the Bm,m

i from each
(i,m) agent are then forwarded to the 0 agent who forms Am,m̃ and Bm,m

broadcasts this back to all (i,m) agents.

Updating Lagrange Multipliers: In order to satisfy the constraints we must
also update the Lagrange multipliers. To minimize communication between
agents this is done in the simplest possible way – by taking the partial derivatives
with respect to λ. This gives

λj ← λj + αλEq∗ [cj(x)] (1.9)

where αλ is a step size and q∗ is the minimizer of L at the old settings of the
multipliers.

Estimation of Conditional Expectations: All update rules require esti-
mation of conditional expectations with some variables clamped to particular
values. These are estimated exactly if a closed form expression is available, or
with Monte-Carlo sampling if no simple closed form exists. For the problems
addressed here the expectations may be evaluated closed form, but Monte Carlo
sampling can also be used [6, 8].

1.4 Experiments

We test the method on two different problems: a k-sat constraint satisfaction
problem having multiple feasible solutions, and an unconstrained optimization
of an NK function.

1.4.1 k-sat

The k-sat problem is perhaps the best studied CSP [5]. The goal is to assign
N binary variables xi values so that C clauses are satisfied. The ath clause
involves k variables labeled by va,j ∈ [1, N ] (for j ∈ [1, k]), and k binary values
associated with each a and labeled by σa,j . The ath clause is satisfied iff ca(x) ≡
∨k

j=1[xva,j
= σa,j ] is true. Accordingly we write G(x, λ) ≡ λ⊤c(x) where λ and

c are vectors of length C whose a components are λa, and ca(x) respectively.
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Figure 1.1: (a) Evolution of Lagrangian value (solid line), expected constraint vi-
olation (dotted line), and constraint violations of most likely configuration (dashed
line). (b) P (G) after minimizing the Lagrangian for the first 3 multiplier settings. At
termination P (G) = δ(G).

Noting that the ath clause is violated only when all xva,j
= σa,j (with σ ≡

notσ), the Lagrangian over product distributions can be written as L(q) =
λ⊤c(q)−TS(q) where c(q) is the C-vector of expected constraint violations whose

ath component is ca(q) ≡
∏k

j=1 qva,j
(σa,j). The only communication required to

evaluate G and its conditional expectations is between agents appearing in the
same clause. Typically, this communication network is sparse; for the N = 100,
k = 3, C = 430 variable problem each agent interacts with only 6 other agents
on average.

For any fixed setting of the Lagrange multipliers, the Lagrangian is min-
imized by iterating the equations (1.5) – (1.8). Rather than update a single
agent at a time we randomly select a subset of variables no two of which impact
each other and update the subset simultaneously. The minimization is termi-
nated at a local minimum q∗. If all constraints are satisfied at q∗ we return the
solution x∗ = arg maxx q∗(x) otherwise the Lagrange multipliers are updated
according to Eq. (1.9). In the present context, this updating rule offers a num-
ber of benefits. Firstly, those constraints which are violated most strongly have
their penalty increased the most, and consequently, the agents involved in those
constraints are most likely to alter their state. Secondly, the Lagrange multipli-
ers contain a history of the constraint violations (since we keep adding to λ) so
that when the agents coordinate on their next move they are unlikely to return
a previously violated state. Lastly, rescaling the Lagrangian by the norm of λ
gives L(q) = λ̂⊤c(q)−TS(q)/‖λ‖ where λ̂ = λ/‖λ‖ so that the updating the La-
grange multipliers can be seen as defining a cooling schedule where T → T/‖λ‖.
The parameter αλ thus governs the overall rate of cooling. We used αλ = 0.5.

Fig. 1.1 presents results for a 100 variable k = 3 problem using a sin-
gle mixture. The problem is satisfiable formula uf100-01.cnf from SATLIB
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(www.satlib.org). It was generated with the ratio of clauses to variables be-
ing near the phase transition, and consequently has few solutions. Fig. 1.1(a)
shows the variation of the Lagrangian, the expected number of constraint vi-
olations, and the number of constraints violated in the most probable state
xmp ≡ arg maxx q(x) as a function of the number of iterations. The starting
state is the maximum entropy configuration, and the starting temperature is
T = 0.0015. The iterations at which the Lagrange multipliers are updated are
indicated by vertical dashed lines which are clearly visible as discontinuities in
the Lagrangian values. To show the stochastic underpinnings of the algorithm we
plot in Fig. 1.1(b) the probability density of the number of constraint violations
obtained as Prob(G) =

∑

x q(x)δ
(

G−G(x, 1)
)

.

Results on a larger problem with more mixtures are shown in Fig. 1.2(a).
This is the 250 variable/1065 clause problem uf250-01.cnf from SATLIB with
the first 50 clauses removed so that the problem has multiple solutions. The
initial temperature is 0.1. We plot the number of constraints violated in the
most probable state of each mixture as a function of the number of updates.
as well as the expected number of violated constraints. After 8000 steps three
distinct solutions have been found along with a fourth solution which violates a
single constraint.
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Figure 1.2: (a) The solid colored curves show the number of unsatisfied clauses in of
the best xmp configurations of each of the 4 mixtures vs iterations. The solid black
line plots the expected number of violations, and the dashed black line shows the
approximation to the JS distance. (b) The solid colored curves show the evolution of
the G value of the best xmp configurations for each of 5 mixtures versus number of
iterations. The dashed black line shows the corresponding approximation to the JS
distance.
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1.4.2 Minimization of NK Functions

The NK model defines a family of tunably difficult optimization problems [3].
The energy of N binary variables is defined as the average of N contribu-
tions local to each variable xi and involving K other randomly chosen variables
x1

i · · ·x
K
i : G(x) = N−1

∑N

i=1 Ei(xi;x
1
i , · · ·x

K
i ). For each of the 2K+1 local con-

figurations Ei is assigned a value drawn uniformly from 0 to 1. Fig. 1.2(b) plots
the energy of a 5 mixture model for a multi-modal N = 300 K = 2 function.
At termination 5 distinct configurations are obtained with the nearest pair of
solutions having Hamming distance 12.

1.5 Conclusion

A distributed constrained optimization framework based on probability La-
grangians has been presented. Motivation for the framework was drawn from
an extension of full-rationality game theory to bounded rational agents. An al-
gorithm was developed and demonstrated on two problems. The results show
a promising, highly distributed, off-the-shelf approach to constrained optimiza-
tion.
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